Premium
Oxidation and crosslinking processes during thermal aging of low‐density polyethylene films
Author(s) -
Chabira Salem F.,
Sebaa Mohamed,
G'sell Christian
Publication year - 2011
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.34080
Subject(s) - materials science , polymer , polyethylene , crystallization , microstructure , fourier transform infrared spectroscopy , thermal oxidation , polymer chemistry , chain scission , ductility (earth science) , composite material , polystyrene , chemical engineering , creep , layer (electronics) , engineering
This work analyzes the influence of thermal degradation on the microstructure and the mechanical properties of low‐density polyethylene subjected to aging at 70°C in the dark for times up to 21 months. It is found that the polymer shows a gradual increase of its elastic modulus and a dramatic reduction of its ductility, due to secondary crystallization. Infrared spectroscopy (FTIR) reveals the autoaccelerated oxidation of the polymer after 5 months aging. It is observed that the unsaturated vinylidene groups initially present in the material are gradually overridden by vinyl groups and, eventually, by t‐vinylene groups. Nuclear magnetic resonance ( 13 C NMR) shows that the initial butyl chain branches are progressively completed by shorter ramifications, namely ethyl branches. These results are discussed in term of macromolecular mechanisms: (i) oxidation, (ii) chain scission, and (iii) crosslinking. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011