Premium
Hydroxyapatite (n‐HA)/unsaturated poly(ester‐amide) nanocomposites for bone fixation material
Author(s) -
Ai YongPing,
Zeng YingYing,
Xie ShiKun,
Tang FangGen,
He DeYong,
Yi RongXi,
Li JiuMing,
Jiang Fen,
Zhou TaiPing
Publication year - 2011
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.33988
Subject(s) - polymer chemistry , amide , materials science , maleic anhydride , gel permeation chromatography , copolymer , condensation polymer , nanocomposite , hydrolysis , polyamide , chemistry , organic chemistry , polymer , composite material
A new type of unsaturated poly(ester‐amide) viz maleic anhydride‐phthalic anhydride‐ethylene glycol‐neopentylene glycol‐glycin copolymer was prepared by melt polycondensation. The copolymer was characterized by FT‐IR, gel permeation chromatography, and thermal gravimetric analysis. The molecular structure of crosslinked unsaturated poly(ester‐amide) was determined by wide‐angle X‐ray diffraction. Hydroxyapatite (n‐HA) was used to boost up the new unsaturated poly (ester‐amide), the flexural properties of n‐HA/unsaturated poly(ester‐amide) nanocomposites with different n‐HA content were measured. Studies of degradation behavior were carried out in simulated body fluid at pH 7.4 and 37°C, the flexural strength changes and cumulative mass loss of n‐HA/ unsaturated poly(ester‐amide) nanocomposites were measured at different degradation times. The n‐HA/unsaturated poly(ester‐amide) nanocomposites was hydrolyzed in 1 M NaOH standard solution at room temperature to study the mass loss with different n‐HA contents. All the preliminary results suggested that n‐HA/unsaturated poly(ester‐amide) nanocomposites might be potentially used as a new type of bone fixation material. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011