z-logo
Premium
Crack initiation and propagation in circular rubber bearings subjected to cyclic compression
Author(s) -
Chou HsoungWei,
Huang JongShin
Publication year - 2011
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.33817
Subject(s) - natural rubber , materials science , fracture mechanics , structural engineering , composite material , cylinder , compression (physics) , cracking , finite element method , fatigue testing , crack closure , boundary value problem , mechanics , engineering , mathematics , geometry , physics , mathematical analysis
The fatigue failure mechanism of rubber bearings under cyclic compression is important in evaluating their fatigue lives and thus is analyzed theoretically and numerically here. At first, the stress distributions in a bonded rubber cylinder derived from three different existing models were utilized to calculate the cracking energy densities within it. Next, the location of fatigue crack initiation and the direction of subsequent crack propagation in circular rubber bearings were consecutively determined. Furthermore, finite element numerical results were compared to those obtained theoretically from the three models to check their validity in predicting the fatigue crack initiation and propagation in circular rubber bearings. Based on the quasi‐statically theoretical and numerical results, it is found that the fatigue cracks initiate first at the outermost boundary between rubber and steel plates and propagate later inwards to the center of circular rubber bearings. The corresponding fatigue failure mechanism obtained theoretically and numerically is consistent with experimental findings reported previously. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here