z-logo
Premium
Kinetics of UV‐initiated RAFT crosslinking polymerization of dimethacrylates
Author(s) -
Zhuo Ding,
Ruan Yingbo,
Zhao Xuemei,
Ran Rong
Publication year - 2011
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.33721
Subject(s) - polymerization , polymer chemistry , raft , materials science , kinetics , monomer , reversible addition−fragmentation chain transfer polymerization , polymer , ethylene glycol , radical polymerization , bulk polymerization , chain transfer , copolymer , chemical engineering , chemistry , composite material , organic chemistry , physics , quantum mechanics , engineering
The UV‐initiated RAFT polymerizations of a series of poly(ethylene glycol) dimethacrylates (PEGDMA) were investigated using differential scanning photocalorimetry (DPC) at room temperature. The rate of the RAFT system was much lower than that of a conventional free radical polymerization. A mild autoacceleration occurred as the addition reaction became diffusion controlled. The influence of the spacer length (CH 2 CH 2 O) x between the vinyl moieties of the dimethacrylates on the polymerization kinetics was examined. The polymerization rate of PEGDMA decreased with an increased x value from 4 to 9, but it increased with a further increased x value from 9 to 14. Mechanical properties of the resulting polymers were also examined by dynamic mechanical analysis (DMA). It was concluded that the presence of the RAFT agent during polymerization of multifunctional monomers did not have an effect on the heterogeneity of the polymer network. In comparison with three different PEGDMAs, the PEGDMA with the longest spacer formed the most homogeneous networks with a lower crosslinking density. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here