Premium
Capacitance properties of graphite oxide/poly(3,4‐ethylene dioxythiophene) composites
Author(s) -
Han Yongqin,
Ding Bing,
Tong Hao,
Zhang Xiaogang
Publication year - 2011
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.33610
Subject(s) - materials science , pedot:pss , supercapacitor , capacitance , graphite oxide , graphite , composite material , composite number , ethylene oxide , conductive polymer , electrochemistry , electrode , chemical engineering , polymer chemistry , layer (electronics) , polymer , copolymer , chemistry , engineering
Poly(3,4‐ethylene dioxythiophene) (PEDOT) and graphite oxide (GO)/PEDOT composites (GPTs) doped with poly(sodium styrene sulfate) (PSS) were synthesized by in situ polymerization in aqueous media. The electrochemical capacitance performances of GO, PEDOT–PSS, and GPTs as electrode materials were investigated. The GPTs had a higher specific capacitance of 108 F/g than either composite constituent (11 F/g for GO and 87 F/g for PEDOT–PSS); this was attributable to its high electrical conductivity and the layer‐within/on‐layer composite structure. Such an increase demonstrated that the synergistic combination of GO and PEDOT–PSS had advantages over the sum of the individual components. On the basis of cycle‐life tests, the capacitance retention of about 78% for the GPTs compared with that of 66% for PEDOT–PSS after 1200 cycles suggested a high cycle stability of the GPTs and its potential as an electrode material for supercapacitor applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011