z-logo
Premium
Mechanical and thermal properties of calcium carbonate‐filled PP/LLDPE composite
Author(s) -
Ghalia Mustafa Abu,
Hassan Azman,
Yussuf Abdirahman
Publication year - 2011
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.33570
Subject(s) - linear low density polyethylene , materials science , composite material , ultimate tensile strength , flexural strength , izod impact strength test , differential scanning calorimetry , composite number , polypropylene , glass transition , vicat softening point , crystallization , brittleness , polyethylene , polymer , softening point , chemical engineering , physics , engineering , thermodynamics
Polymer blends typically are the most economical means to develop new resins for specific applications with the best cost/performance balance. In this paper, the mechanical properties, melting, glass transition, and crystallization behavoir of 80 phr polypropylene (PP) with varying weights of linear low density polyethylene (LLDPE) at 10, 20/ 20 wt % CaCO 3 , 30, 40, and 50 phr were studied. A variety of physical properties such as tensile strength, impact strength, and flexural strength of these blends were evaluated. The compatibility of these composite was examined by differential scanning calorimetry (DSC) to estimate T m and T c , and by dynamic mechanical analysis (DMA) to estimate T g . The fractographic analysis of these blends was examined by scanning electron microscopy (SEM). It has been confirmed that increasing the LLDPE content trends to decreases the tensile strength and flexural strength. However, increasing the LLDPE content led to increases in the impact strength of PP/LLDPE blends. It was also found that up to 40 phr the corresponding melting point ( T m ) was not effected with increasing LLDPE content. Each compound has more than one T g , which was informed that there is a brittle‐ductile transition in fracture nature of these blends, the amount of material plastically deformed on the failure surface seems to increase with the increasing the LLDPE content. And PP/LLDPE blends at temperature (23°C) showed a ductile fracture mode characterized by the co‐existence of a shear yielding process; whereas at lower temperature (−20°C) the fractured surfaces of specimens appear completely brittle. The specimens broke into two pieces with no evidence of stress whitening, permanent macroscopic deformation or yielding. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here