z-logo
Premium
Nanotube surface functionalization effects in blended multiwalled carbon nanotube/PVDF composites
Author(s) -
O'Bryan G.,
Yang E. L.,
Zifer T.,
Wally K.,
Skinner J. L.,
Vance A. L.
Publication year - 2010
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.33264
Subject(s) - materials science , carbon nanotube , composite material , nanocomposite , ternary operation , percolation threshold , composite number , nanotube , surface modification , dispersion (optics) , percolation (cognitive psychology) , buckypaper , electrical resistivity and conductivity , chemical engineering , physics , engineering , optics , neuroscience , computer science , electrical engineering , biology , programming language
Abstract A mixed fill system of multiwalled carbon nanotubes (MWCNT) and hydroxylated MWCNT (HO‐MWCNT) in a poly(vinylidene fluoride) (PVDF) matrix was investigated to improve nanotube dispersion and enhance electrical percolation for the bulk nanocomposites. Nonfunctionalized MWCNT were blended at various concentrations into dimethylformamide solutions containing PVDF with 0, 5, or 10 wt % HO‐MWCNT. Composite samples prepared from these solutions were examined by four‐point probe resistivity measurements. The percolation threshold decreased from 0.49 wt % MWCNT in binary MWCNT/PVDF composites to 0.25 wt % for ternary composites containing MWCNT/HO‐MWCNT/PVDF, with either 5 or 10 wt % HO‐MWCNT. In the case of the ternary composite with 10 wt % HO‐MWCNT, the lowest fill percent of MWCNT (0.25 wt %) measured a conductivity that was three orders of magnitude higher than the binary MWCNT/PVDF composite containing twice the concentration of MWCNT (0.5 wt %). © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here