Premium
High‐performance hyperbranched poly(phenylene oxide) modified bismaleimide resin with high thermal stability, low dielectric constant and loss
Author(s) -
Huang Pingzhen,
Gu Aijuan,
Liang Guozheng,
Yuan Li
Publication year - 2010
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.33172
Subject(s) - dielectric , materials science , thermal stability , curing (chemistry) , phenylene , dielectric loss , composite material , oxide , polymer chemistry , polymer , chemistry , organic chemistry , optoelectronics , metallurgy
High‐performance hyperbranched poly(phenylene oxide)‐modified bismaleimide resin with high thermal stability, low dielectric constant, and loss was developed, which is made up of hyperbranched poly(phenylene oxide) (HBPPO), 4,4′‐bismaleimidodiphenylmethane (BDM), and o, o′‐diallylbisphenol A (DBA). The curing reactivity, morphology, and performance of BDM/DBA/HBPPO resin were systemically investigated, and similar investigations for BDM/DBA resin were also carried out for comparison. Results show that BDM/DBA/HBPPO and BDM/DBA resins have similar curing mechanism, but the former can be cured at lower temperature than the later; in addition, cured BDM/DBA/HBPPO resin with suitable HBPPO content has better thermal stability and dielectric properties (lower dielectric constant and loss) than BDM/DBA resin. The difference in macroproperties between BDM/DBA/HBPPO and BDM/DBA resins results from the different chemical structures and morphologies of their crosslinking networks. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011