z-logo
Premium
Synergistic effect of vermiculite on the intumescent flame retardance of polypropylene
Author(s) -
Ren Qiang,
Zhang Yong,
Li Jian,
Li Jin Chun
Publication year - 2010
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.33113
Subject(s) - intumescent , ammonium polyphosphate , fire retardant , pentaerythritol , limiting oxygen index , montmorillonite , polypropylene , materials science , cone calorimeter , char , vermiculite , thermogravimetric analysis , composite material , chemical engineering , polymer chemistry , combustion , chemistry , organic chemistry , engineering
Synergistic effects of the natural clays unexfoliated vermiculite (VMT), exfoliated vermiculate (EVMT), and montmorillonite (MMT) on the intumescent flame retardance of polypropylene were investigated systematically with the usual fire testing methods. The limiting oxygen index (LOI) of flame‐retardant polypropylene (FRPP) filled with 30 wt % intumescent flame retardants (IFRs) composed of ammonium polyphosphate and pentaerythritol were increased from 30 to 33 vol % for VMT and MMT and to 36 vol % for EVMT when 1 wt % IFR was substituted for clay. The synergistic effectivities calculated on the basis of increases in the LOI values were 1.4 for VMT, 1.3 for MMT, and 1.6 for EVMT. Cone calorimetry also revealed the existence of a synergistic effect. EVMT had the best performance for lowering the peak values of the heat release rate and smoke production rate. The thermogravimetric analysis results show that EVMT had the best performance for increasing the char residue of FRPP higher than 650°C compared with VMT and MMT. The high content of iron and the small particle size of EVMT may have been responsible for its high synergistic effect at a low filling level. No remarkable variations of the diffraction peaks were observed in the X‐ray diffraction patterns of the original clay and the clay in FRPP. All of the formulations, with or without clay, exhibited small variations in the mechanical properties. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here