z-logo
Premium
Photodegradation of thermodegraded polypropylene/high‐impact polystyrene blends: Mechanical properties
Author(s) -
Fernandes L. L.,
Freitas C. A.,
Demarquette N. R.,
Fechine G.J. M.
Publication year - 2010
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.33096
Subject(s) - photodegradation , polypropylene , materials science , melt flow index , polystyrene , composite material , izod impact strength test , ultimate tensile strength , polymer blend , copolymer , styrene , ternary operation , extrusion , polymer , chemistry , photocatalysis , computer science , programming language , catalysis , biochemistry
The influence of the addition of high‐impact polystyrene (HIPS) on polypropylene (PP) photodegradation was studied with blends obtained by extrusion with and without styrene–butadiene–styrene (SBS) copolymer (10 wt % with respect to the dispersed phase). The concentrations of HIPS ranged from 10 to 30 wt %. The blends and pure materials were exposed for periods of up to 15 weeks of UV irradiation; their mechanical properties (tensile and impact), fracture surface, and melt flow indices were monitored. After 3 weeks of UV exposure, all of the materials presented mechanical properties of the same order of magnitude. However, for times of exposure greater than 3 weeks, an increasing concentration of HIPS resulted in a better photostability of PP. These results were explained in light of morphological observations. This increase of photostability was even greater when SBS was added to the blends. It was more difficult to measure the melt flow index of the binary PP/HIPS blends than that of PP for low concentrations of HIPS; this was most likely due to energy transfer between the blend domains during photodegradation. This phenomenon was not observed for the ternary blends. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here