Premium
Relationship between the crystallization behavior and the warpage of film‐insert‐molded parts
Author(s) -
Kim Jin Young,
Kim Seong Yun,
Song Young Seok,
Youn Jae Ryoun
Publication year - 2010
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.33076
Subject(s) - crystallinity , materials science , crystallization , amorphous solid , composite material , shrinkage , polymer , substrate (aquarium) , molding (decorative) , core (optical fiber) , crystallography , chemical engineering , chemistry , oceanography , engineering , geology
The dimensional variation of an injection‐molded, semicrystalline polymer part is larger than the variation of an amorphous polymer part because the shrinkage of a crystalline polymer is generally greater than the shrinkage of an amorphous one. We investigated the warpage of film‐insert‐molded (FIM) specimens to determine the effect of the crystallization behavior on the deformation of FIM parts. More perfect crystalline structures and higher crystallinity developed in the core region of the FIM specimens versus other regions. Relatively imperfect crystalline structures and low crystallinity developed in the adjacent regions of the inserted films, whereas a thin, amorphous skin layer developed in the adjacent regions of the metallic mold wall. The crystallizable substrate in the FIM specimens caused very large warpage because nonuniform shrinkage occurred in the thickness direction of the specimens. Therefore, the warpage of an experimentally prepared FIM poly(butylene terephthalate) specimen was greater than that predicted numerically because of its complex crystallization behavior. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011