z-logo
Premium
Production and properties of solvent‐cast poly(ε‐caprolactone) composites with carbon nanostructures
Author(s) -
Dottori M.,
Armentano I.,
Fortunati E.,
Kenny J. M.
Publication year - 2010
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.33033
Subject(s) - materials science , composite material , casting , nucleation , composite number , carbon nanofiber , ultimate tensile strength , carbon nanotube , ductility (earth science) , nanocomposite , dispersion (optics) , nanofiber , creep , physics , organic chemistry , optics , chemistry
Composites based on carbon nanostructures (CNS) and poly(ε‐caprolactone) (PCL) were produced by solvent casting technique. Single‐walled carbon nanotubes (SWCNTs) and carbon nanofibers (CNFs) were selected, to produce composite films with enhanced properties. The role of CNS type and percentage were investigated in terms of morphological, thermal, mechanical, and dielectrical properties. Composite morphological analysis reveals a good dispersion of CNS, at low and high content. Thermal properties underline the nucleation effect of CNS on PCL polymer matrix. Reinforcing effects in terms of increased tensile modulus were obtained with both nanofillers, but a higher reduction of the ductility was shown in PCL/CNF materials. A higher efficiency to form a conductive network, assessed by AC conductivity, was observed for SWCNTs at concentration lower than 1 wt. % © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here