Premium
Temperature‐dependent pyrolytic product evolution profile for polypropylene
Author(s) -
Hujuri Ujwala,
Ghoshal Aloke K.,
Gumma Sasidhar
Publication year - 2010
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.32904
Subject(s) - polypropylene , pyrolysis , radical , pyrolytic carbon , polymer chemistry , decomposition , polymer , intramolecular force , bond cleavage , chemistry , hydrocarbon , chemical engineering , materials science , organic chemistry , catalysis , engineering
The composition of the pyrolysis products of plastics depends on disintegration of the macromolecule into variety of hydrocarbon fractions. In this work, a detailed gas chromatographic study of pyrolysis products of polypropylene (PP) between 200 and 600°C was carried out. The pyrograms have been analyzed in terms of amount of different products evolved at various pyrolysis temperatures. At low pyrolysis temperatures (200–300°C), the yield of lighter hydrocarbons (C5‐C10) is low; it gradually increases until maximum decomposition temperature (446°C) and decreases thereafter. The following reaction types were considered to explain the decomposition mechanism of PP: (a) main chain cleavage to form chain‐ terminus radicals; (b) intramolecular hydrogen transfer to generate internal radicals; (c) intermolecular hydrogen transfer to form both volatile products and radicals; and (d) β‐scission to form both volatiles and terminally unsaturated polymer chains. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom