Premium
Crystallization of amorphous poly(lactic acid) induced by organic solvents
Author(s) -
Naga Naofumi,
Yoshida Yuji,
Inui Masaya,
Noguchi Keiichi,
Murase Shigemitsu
Publication year - 2010
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.32890
Subject(s) - crystallization , acetone , amorphous solid , hexane , solvent , materials science , toluene , polymer chemistry , chemical engineering , permeation , xylene , organic chemistry , chemistry , membrane , biochemistry , engineering
Crystallization of amorphous poly(lactic acid) (PLA) was investigated in various organic solvents, such as acetone, ethylacetate, diethylether, tetrahydrofurane, methanol, hexane, toluene, xylene, and o ‐dichlorobenene. Most of the solvents, except hexane, induced crystallization of amorphous PLA. Acetone was the most effective solvent to accelerate the crystallization among the solvents used. The crystallization was induced by permeation of acetone into the amorphous phase of PLA, and the permeation obeyed Fick type diffusion. The crystallization rate increased with increasing of conducting temperature. Crystallized PLA formed α crystalline structure. The permeated acetone in the crystallized PLA gradually evaporated as time passes, and the elimination of acetone affected thermal and mechanical properties of the crystallized PLA. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011