z-logo
Premium
Preparation, crystallization behavior, and dynamic mechanical property of nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplate
Author(s) -
He Fuan,
Fan Jintu,
Lau Sienting,
Chan Laiwa Helen
Publication year - 2010
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.32801
Subject(s) - nanocomposite , materials science , differential scanning calorimetry , crystallization , dynamic mechanical analysis , scanning electron microscope , composite material , transmission electron microscopy , graphite , fluoride , chemical engineering , polymer , nanotechnology , chemistry , inorganic chemistry , physics , engineering , thermodynamics
Nanocomposites based on poly(vinylidene fluoride) (PVDF) and exfoliated graphite nanoplate (xGnP) were prepared by solution precipitation method. The resulting nanocomposites were investigated with respect to their structure and properties by scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction, and dynamic mechanical analysis. Both SEM and TEM examinations confirmed the good dispersion of xGnP in the PVDF matrix. The nonisothermal crystallization behavior of the PVDF/xGnP nanocomposites was studied using DSC technique at various cooling rates. The results indicated that the xGnPs in nanometer size might act as nucleating agents and accelerated the overall nonisothermal crystallization process. Meanwhile, the incorporation of xGnP significantly improved the storage modulus of the PVDF/xGnP nanocomposites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here