z-logo
Premium
Coupled‐single‐particle and Monte Carlo model for propylene polymerization
Author(s) -
Wang Wei,
Zheng ZuWei,
Luo ZhengHong
Publication year - 2010
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.32629
Subject(s) - monte carlo method , polymerization , materials science , diffusion , particle (ecology) , polymer , dynamic monte carlo method , kinetic monte carlo , thermodynamics , chemistry , polymer chemistry , physics , composite material , mathematics , statistics , oceanography , geology
A coupled‐single‐particle and Monte Carlo model was used to simulate propylene polymerization. To describe the effects of intraparticle transfer resistance on the polymerization kinetics, the polymeric multilayer model (PMLM) was applied. The reaction in each layer of the PMLM was described with the Monte Carlo method. The PMLM was solved together with the Monte Carlo model. Therefore, the model included the factors of the mass‐ and heat‐transfer resistance as well as the stochastic collision nature of the polymerization catalyzed with single‐site‐type/multiple‐site‐type catalysts. The model presented results such as the polymerization dynamics, the physical diffusion effect, and the polymer molecular weight and its distribution. The simulation data were compared with the experimental/actual data and the simulation results from the uniform Monte Carlo model. The results showed that the model was more accurate and offered deeper insight into propylene polymerization within such a microscopic reaction–diffusion system. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here