Premium
Preparation, crystallization, and properties of biodegradable poly(butylene adipate‐ co ‐terephthalate)/organomodified montmorillonite nanocomposites
Author(s) -
Yang Fang,
Qiu Zhaobin
Publication year - 2010
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.32619
Subject(s) - nanocomposite , montmorillonite , materials science , crystallization , nucleation , adipate , thermal stability , composite material , organoclay , transmission electron microscopy , chemical engineering , chemistry , nanotechnology , organic chemistry , engineering
Intercalated and exfoliated nanocomposites of biodegradable poly(butylene adipate‐ co ‐terephthalate) (PBAT) and Cloisite 30B (C30B) were fabricated by a solution‐casting method to study the effects of the clay loading on the crystallization behavior, thermal stability, and dynamic mechanical properties of PBAT in PBAT/C30B nanocomposites. X‐ray diffraction and transmission electron microscopy results indicated the formation of exfoliated nanocomposites at low clay loadings (<5 wt %) and a mixture of exfoliated and intercalated nanocomposites with a clay content of 8 wt % throughout the PBAT matrix. Nonisothermal melt crystallization studies indicated that C30B enhanced the crystallization of PBAT, apparently because of a heterogeneous nucleation effect. Moreover, an attempt was made to quantitatively study the influence of the presence of C30B and its contents on the nucleation activity of PBAT in the PBAT/C30B nanocomposites. The thermal stability of PBAT decreased slightly in the nanocomposites. However, the storage modulus of PBAT apparently increased with the C30B loading increasing in the PBAT/C30B nanocomposites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom