Premium
New smart carrageenan‐based superabsorbent hydrogel hybrid: Investigation of swelling rate and environmental responsiveness
Author(s) -
Salimi Hamid,
Pourjavadi Ali,
Seidi Farzad,
Jahromi Payam Eftekhar,
Soleyman Rouhollah
Publication year - 2010
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.32210
Subject(s) - swelling , acrylic acid , thermogravimetric analysis , acrylate , self healing hydrogels , materials science , chemical engineering , polymer chemistry , radical polymerization , superabsorbent polymer , scanning electron microscope , polymerization , nuclear chemistry , chemistry , composite material , polymer , copolymer , engineering
Synthesis of novel natural‐based superabsorbents with improved properties is of prime importance in many applications. In this article we report an efficient synthesis of new polysaccharide‐based superabsorbent hybrid composing carrageenan, acrylic acid, sodium acrylate, and 2‐hydroxyethyl acrylate through homogenous solution polymerization process. Infrared spectroscopy and thermogravimetric analysis (TGA) were carried out to confirm the chemical structure of the hydrogel. Moreover, morphology of the samples was examined by scanning electron microscopy (SEM). To deeper studies on the structure‐property relation in SAP hydrogels, three hydrogels with different acrylic acid/2‐hydroxyethyl acrylate (AA/HEA) weight ratios were synthesized and swelling capacity in various media was assessed. The hydrogel hybrid was also tested to be swollen and deswollen alternatively in 0.01 and 0.1 M sodium chloride solution. Moreover, the swelling‐deswelling capability of the hydrogel in alternatively changed methanol‐water mixtures was studied. Additionally, the swelling kinetics of the synthesized hydrogels were examined. The absorbency under load (AUL) of hydrogel was also investigated by using an AUL tester at various applied pressures. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010