Premium
Effect of nanofillers as reinforcement agents for lignin composite fibers
Author(s) -
Sevastyanova O.,
Qin W.,
Kadla J. F.
Publication year - 2010
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.32198
Subject(s) - organoclay , materials science , nanocomposite , organosolv , exfoliation joint , intercalation (chemistry) , montmorillonite , lignin , composite material , composite number , ultimate tensile strength , chemistry , organic chemistry , graphene , nanotechnology
Biobased nanocomposites and composite fibers were prepared from organosolv lignin/organoclay mixtures by mechanical mixing and subsequent melt intercalation. Two organically‐modified montmorillonite (MMT) clays with different ammonium cations were used. The effect of organoclay varying from 1 to 10 wt % on the mechanical and thermal properties of the nanocomposites was studied. Thermal analysis revealed an increased in T g for the nanocomposites as compared with the original organosolv lignin. For both organoclays, lignin intercalation into the silicate layers was observed using X‐ray diffraction (XRD). The intercalated hybrids exhibited a substantial increase in tensile strength and melt processability. In the case of organoclay Cloisite 30B, X‐ray analysis indicates the possibility of complete exfoliation at 1 wt % organoclay loading. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom