Premium
Synthesis and characterization of polymer–nanoclay conductive nanocomposites
Author(s) -
Ahmad Irfan,
Hussain Manwar,
Seo KeumSuk,
Choa YongHo
Publication year - 2009
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.31541
Subject(s) - materials science , polystyrene sulfonate , pedot:pss , nanocomposite , thermogravimetric analysis , sulfonate , montmorillonite , polystyrene , conductive polymer , chemical engineering , polymer , ionic conductivity , composite material , conductivity , polymer chemistry , dodecylbenzene , sodium , electrolyte , chemistry , electrode , engineering , metallurgy
Polymer–clay nanocomposites based on poly(3,4‐ethylenedioxythiophene)/polystyrene sulfonate (PEDOT) : PSS and nanoclay montmorillonite were synthesized and characterized. The doping of PEDOT with polystyrene sulfonate made it water dispersible (PEDOT–PSS). Sodium dodecyl benzene sulfonate (SDBS) and ionic liquid were used to increase the interlayer spacing and the conductivity of the nanocomposites, respectively. The nanocomposite was characterized by various techniques, such as X‐ray diffraction (XRD), TEM, surface resistivity, and thermogravimetric measurement analysis. Interlayer spacing increased as a result of the addition of SDBS, and this was confirmed by the 2θ shift observed via XRD analysis. The surface morphology of the conductive coated clay was examined by TEM analysis. Good electrical surface conductivity, interlayer spacing, and polymer coating were observed for the material prepared using the surfactant and conductive ionic liquid. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010