Premium
Hydrogels from scleroglucan and ionic crosslinkers: Characterization and drug delivery
Author(s) -
Coviello Tommasina,
Matricardi Pietro,
Balena Alessandra,
Chiapperino Bicemaria,
Alhaique Franco
Publication year - 2009
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.31375
Subject(s) - self healing hydrogels , rheology , swelling , materials science , viscoelasticity , ionic strength , drug delivery , chemical engineering , scanning electron microscope , borax , polymer chemistry , composite material , chemistry , nanotechnology , aqueous solution , organic chemistry , raw material , engineering
Abstract The polysaccharide scleroglucan (Sclg), exploited as a matrix suitable for modified drug delivery, was crosslinked in the presence of three ions: borate, aluminum, and iron. A rheological investigation indicated the main differences between the hydrogels in their viscoelastic linear response: the Sclg/borax system showed the highest strength when deformed by elongation, whereas the strength of the other systems broke down, in terms of viscosity, at much lower values of the imposed strain. Tablets prepared from the gels showed remarkable differences in their water uptake and dimensional swelling. On the other hand, the tablets, loaded with drugs of different steric hindrances, showed similar release behavior, regardless of the crosslinking agent. Scanning electron microscopy analysis was related to the delivery and rheological profiles. Texture analysis, carried out on tablets swollen for 5 h, showed different values of cohesion. Furthermore, when the generalized Maxwell model was applied to the relaxation data, the obtained mechanical spectra showed a more pronounced solidlike character of the Sclg/iron network in comparison with the prevailing viscous behavior of the other matrices. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010