Premium
Structure and properties of novel regenerated cellulose films prepared from cornhusk cellulose in room temperature ionic liquids
Author(s) -
Cao Yan,
Li Huiquan,
Zhang Yi,
Zhang Jun,
He Jiasong
Publication year - 2009
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.31273
Subject(s) - ionic liquid , cellulose , materials science , ultimate tensile strength , chemical engineering , regenerated cellulose , fourier transform infrared spectroscopy , chloride , elastic modulus , nuclear chemistry , polymer chemistry , composite material , chemistry , organic chemistry , catalysis , metallurgy , engineering
Cornhusk cellulose was regenerated using the ionic liquids viz., 1‐allyl‐3‐methylimidazolium chloride (AmimCl) and 1‐ethyl‐3‐methylimidazolium acetate (EmimAc). The cast cellulose films were characterized by FTIR, WAXD and SEM techniques. Their mechanical properties were also studied. These studies indicated that AmimCl and EmimAc are good solvents for the regeneration of cornhusk cellulose. The regenerated cornhusk cellulose (RCC) was found to be cellulose (II) with dense structure. The films cast from AmimCl exhibited good mechanical properties; the tensile modulus and strength were as high as 6 GPa and 120 MPa respectively, whereas these values for those films cast using EmimAc were found to be 4.1 GPa and 47 MPa respectively. Further, it was observed that after regeneration, the solvents could be effectively recycled. Thus a novel nonpolluting process of forming RCC films from agricultural waste was developed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010