Premium
Study on properties and aggregation structures of deacetylated konjac glucomannan/chitosan hydrochloride absorbent blend gel films
Author(s) -
Liu J.,
Li B.,
Zhu B.,
Fu R.H.,
Yuan L.N.,
Huang W.,
Ma M.H.
Publication year - 2009
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.31123
Subject(s) - miscibility , swelling , materials science , chitosan , scanning electron microscope , fourier transform infrared spectroscopy , casting , ultimate tensile strength , glucomannan , chemical engineering , solvent , polymer chemistry , polymer , polymer blend , hydrogen bond , composite material , chemistry , organic chemistry , copolymer , molecule , biochemistry , engineering
A series of novel blend films of deacetylated konjac glucomannan (d‐KGM) and Chitosan hydrochloride (CHI·HCl) were prepared successfully by using the solvent‐casting technique with different blending ratios of the two polymers. The miscibility and aggregation structure of the blend films were studied by Fourier transform infrared spectroscopy, wide‐angle X‐ray diffraction and scanning electron microscopy. The results indicated that the blend system of d‐KGM and CHI·HCl had a conditional miscibility. A new crystal occurred and hydrogen‐bonding interaction was strengthened when the CHI·HCl content in the blend films was 40%. The effects of deacetylation degree of KGM, acids (the solvent Chitosan dissolved in), temperature, and the mix ratio on the swelling behavior of the blend films were also studied. The blend film KC3 (CHI·HCl content in the blend films was 30%) had not only the highest equilibrium swelling degree (26 times) but also the highest tensile strength, and it could be regarded as a potential absorbent film material. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010