Premium
Electron‐beam‐radiation‐induced grafting of acrylonitrile onto polypropylene fibers: Influence of the synthesis conditions
Author(s) -
Jeun JoonPyo,
Hua Zu Jian,
Kang PhilHyun,
Nho YoungChang
Publication year - 2009
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.31062
Subject(s) - grafting , acrylonitrile , monomer , polymer chemistry , materials science , polypropylene , sulfuric acid , irradiation , nuclear chemistry , chemical engineering , chemistry , composite material , copolymer , polymer , physics , nuclear physics , engineering , metallurgy
Electron‐beam‐radiation‐induced grafting of acrylonitrile onto polypropylene fibers was investigated with a pre‐irradiation method. Grafting conditions such as the solvents, additives, monomer concentration, radiation dose, and temperature were varied, and the effects on the degree of grafting were studied. The nature of the reaction medium and additives had a considerable influence on the degree of grafting. The dilution of acrylonitrile with N,N ‐dimethylformamide significantly enhanced the degree of grafting in comparison with other solvents. The addition of sulfuric acid to the reaction mixture led to an increase in the degree of grafting and an acceleration of the rate of grafting. The order of dependence of the rate of grafting on the pre‐irradiation dose and monomer concentration was found to be 1.31 and 1.21, respectively, in the presence of sulfuric acid. The activation energy for grafting was calculated to be 21.9 kJ/mol. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010