Premium
Preparation and evaluation of a molecularly imprinted polymer for tolazoline
Author(s) -
Lv Ruihong,
Xu Lan,
Huang Xinhua,
Wang Yaqiong,
Zhang Jin
Publication year - 2009
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.31037
Subject(s) - nip , sorbent , molecularly imprinted polymer , ethylene glycol dimethacrylate , adsorption , tolazoline , polymer , solid phase extraction , chromatography , nuclear chemistry , bulk polymerization , materials science , chemistry , selectivity , polymerization , detection limit , chemical engineering , methacrylic acid , organic chemistry , radical polymerization , composite material , catalysis , medicine , engineering , pharmacology
A uniformly sized molecularly imprinted polymer for the peripheral vasodilator drug tolazoline (T‐MIP) was prepared, and a nonimprinted polymer (NIP) was also synthesized in the same way but in the absence of the template. The T‐MIP was prepared with methylacrylic acid as functional monomer and ethylene glycol dimethacrylate as crosslinker by a multistep swelling and polymerization method. These imprinted materials were characterized by scanning electron microscopy, nitrogen adsorption, and static adsorption experiments. Binding studies were also performed to evaluate the uptake of T‐MIP and NIP with the results that T‐MIP had a significantly higher binding capacity for tolazoline (T) than did NIP. The maximum static adsorption capacities of T‐MIP and NIP for T were 78.9 and 38.8 μmol/g, respectively. The T‐MIPs and NIPs were used as stationary phases of solid‐phase extraction (SPE), and a relative selectivity coefficient ( k ′) value of 5.21 was obtained, which showed that the T‐MIP sorbent had higher selectivity than the NIP sorbent. The method was applied to the determination of T in urine samples. The prepared polymer sorbent showed promise for SPE for gas chromatography determination of T in urine samples. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010