Premium
Optimization of adhesive joints of low density polyethylene (LDPE) composite laminates with polyolefin foam using corona discharge plasma
Author(s) -
Pascual Monica,
Calvo Oscar,
SanchezNácher Lourdes,
Bonet Maria Angeles,
GarciaSanoguera David,
Balart Rafael
Publication year - 2009
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.30906
Subject(s) - low density polyethylene , materials science , composite material , polyolefin , wetting , polyethylene , adhesive , contact angle , surface energy , layer (electronics)
In this work, surface modification of low density polyethylene (LDPE) film has been carried out to optimize adhesive joints with polyolefin foam for uses in technological applications. LDPE films were modified in a continuous way using corona discharge plasma with different powers, ranging from 200 to 600 W and several film advance rates in the 5–20 m min −1 range. Changes in surface wettability have been studied with contact angle measurements and subsequent solid surface energy calculation. A polyurethane adhesive was used to join the LDPE film to a polyethylene foam. Mechanical performance of the adhesive joints has been determined by T‐peel tests and also the aging effects of several hydrothermal conditions have been studied to evaluate the usefulness of these laminate composites in technological applications. Results show that corona discharge powers between 400 and 600 W are suitable in terms of wettability improvement; on other hand, a slight decrease in surface wettability as the film advance rate increases is detected but the overall changes as a consequence of the film advance rate in the 5–20 m min −1 range are small if compared to changes derived from working powers in the 200–600 W range. Adhesive joints offer excellent mechanical performance and good durability in hydrothermal conditions thus being appropriate for technical applications. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009