z-logo
Premium
Poly(hydroxybutyrate‐ co ‐hydroxyvalerate)/titanium dioxide nanocomposites: A degradation study
Author(s) -
Buzarovska Aleksandra,
Grozdanov Anita,
Avella M.,
Gentile G.,
Errico M.
Publication year - 2009
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.30867
Subject(s) - thermogravimetric analysis , materials science , crystallinity , titanium dioxide , fourier transform infrared spectroscopy , nanocomposite , differential scanning calorimetry , scanning electron microscope , chemical engineering , crystallization , degradation (telecommunications) , filler (materials) , nuclear chemistry , photocatalysis , composite material , chemistry , organic chemistry , catalysis , telecommunications , physics , computer science , engineering , thermodynamics
Nanocomposites, based on a poly(hydroxybutyrate‐ co ‐hydroxyvalerate) (PHBV) matrix and titanium dioxide (TiO 2 ) nanoparticles and fabricated with a solvent‐casting technique, were characterized with differential scanning calorimetry, thermogravimetric analysis, scanning electron microscopy, and Fourier transform infrared spectroscopy. The content of TiO 2 nanoparticles varied between 0.5 and 10 wt %. Degradation studies, including hydrolytic degradation in a strong base medium (1 N NaOH) and degradation under ultraviolet light at 365 nm, were performed. It was confirmed that the inorganic filler had no great influence on thermal properties such as the melting and crystallization temperatures. Improved degradation temperatures were also confirmed with the increase in the filler content. Degradation observations confirmed significant increases in hydrolytic erosion with the filler content increasing in comparison with the degradation of a pure PHBV film. Also, the photocatalytic activity of the inorganic filler TiO 2 in all investigated composites [irradiated at λ = 365 nm and immersed in a liquid medium (H 2 O)] was evaluated. The degraded samples were analyzed with Fourier transform infrared spectroscopy, which confirmed their increased crystallinity. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here