z-logo
Premium
Curing kinetics of medium reactive unsaturated polyester resin used for liquid composite molding process
Author(s) -
Raja Pandiyan K. Raghu,
Chakraborty Saikat,
Kundu Gautam,
Neogi Swati
Publication year - 2009
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.30720
Subject(s) - thermosetting polymer , curing (chemistry) , materials science , differential scanning calorimetry , isothermal process , kinetics , arrhenius equation , composite material , composite number , polyester , thermodynamics , activation energy , polymer chemistry , chemistry , physics , quantum mechanics
The cure kinetics of medium reactivity unsaturated polyester resin formulated for Liquid Composite Molding process simulation was studied by Differential Scanning Calorimetry (DSC) under isothermal conditions over a specific range of temperature. For isothermal curing reactions performed at 100, 110, and 120°C, several influencing factors were evaluated using the heat evolution behavior of curing process. We propose two‐ and three‐parameter kinetic models to describe the cure kinetics of thermoset resins. Comparisons of the model solutions with our experimental data showed that the three‐parameter model was the lowest parameter model capable of capturing both the degree of cure and the curing rate qualitatively and quantitatively. The model parameters were evaluated by a non‐linear multiple regression method and the temperature dependence of the kinetic rate constants thus obtained has been determined by fitting to the Arrhenius equation. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here