z-logo
Premium
Nanoclay distribution and its influence on the mechanical properties of rubber blends
Author(s) -
Bandyopadhyay Abhijit,
Thakur Varun,
Pradhan Sudip,
Bhowmick Anil K.
Publication year - 2009
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.30655
Subject(s) - natural rubber , polybutadiene , materials science , composite material , phase (matter) , viscoelasticity , polymer blend , viscosity , mooney viscosity , polymer chemistry , polymer , chemistry , copolymer , organic chemistry
The distribution of modified and unmodified nanoclays inside the rubber phases of immiscible rubber–rubber blends composed of nonpolar–polar natural rubber (NR)/epoxidized natural rubber (ENR) and nonpolar–nonpolar NR/polybutadiene rubber (BR) was investigated for the first time. The distribution of clays at various loadings in the blends was calculated from the viscoelastic properties of the blends. For example, in the 50 : 50 NR/ENR blend, 42% Cloisite 30B migrated to the NR phase, and 58% went to the ENR phase. However, in the same blend, only 7% Cloisite Na + was found in the NR phase, and 93% was found in the ENR phase. Again, in the 50 : 50 NR/BR blends, the NR phase contained 85% Cloisite 30B, whereas 55% Cloisite Na + migrated to the NR phase. All these observations were explained with the help of viscosity, X‐ray diffraction, and morphology analyses. The effect of the distribution of the clay on the mechanical properties was also discussed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here