z-logo
Premium
Hydroentanglement nonwoven filters for air filtration and its performance evaluation
Author(s) -
Patanaik Asis,
Anandjiwala Rajesh D.
Publication year - 2010
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.30561
Subject(s) - drag , filtration (mathematics) , nozzle , materials science , composite material , pressure drop , air filter , compression (physics) , computational fluid dynamics , drop (telecommunication) , filter (signal processing) , fiber , airflow , mechanics , mechanical engineering , computer science , engineering , computer vision , statistics , physics , mathematics , inlet
New nonwoven filters are developed for air filtration application with the help of hydroentanglement bonding technique. Different types of nonwoven filters are produced by varying the hydroentanglement processing parameters. The changes in nonwoven filter properties after prolonged exposure to working conditions under cyclic compression play an important role in its long‐term performance characteristics. The performance of the developed filters are evaluated in terms of changes in pore characteristics, filtration parameters, and strength after cyclic compression and compared with the corresponding values before subjecting it to cyclic compression. The developed filter shows good performance characteristics for air filtration with low pressure drop and high efficiency in capturing micron and submicron size particles without any significant changes in its strength. Theoretical understanding of the fluid flow emerging from the nozzles during the hydroentanglement process is simulated by the computational fluid dynamics (CFD). Based on the fluid drag force and impact force of the water jets, a mechanism of fiber bonding is proposed. The impact force of the water jets and fluid drag forces plays an important role in the mechanism of fiber bonding. Nozzle condition also plays an important role in economizing this process. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here