z-logo
Premium
Nielsen thermal conductivity model for single filler carbon/polypropylene composites
Author(s) -
Gaxiola Daniel Lopez,
Keith Jason M.,
King Julia A.,
Johnson Beth A.
Publication year - 2009
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.30484
Subject(s) - carbon black , composite material , materials science , polypropylene , graphite , carbon nanotube , filler (materials) , thermal conductivity , carbon fibers , polymer , conductivity , composite number , chemistry , natural rubber
In this study, three different carbon fillers (Thermocarb TC‐300 synthetic graphite, Ketjenblack EC‐600 JD carbon black, and Hyperion Catalysis International's FIBRIL™ carbon nanotubes) were added to a polypropylene matrix to produce single filler composites with filler concentrations of up to 80 wt % synthetic graphite (61.6 vol %), 15 wt % carbon black (8.1 vol %), and 15 wt % carbon nanotubes (7.4 vol %). The through‐plane thermal conductivity for each formulation was measured. For the synthetic graphite, carbon black, and carbon nanotubes composites, the Nielsen model was applied to the experimental through‐plane thermal conductivity data. The Nielsen Model presented in this work showed very good agreement with experimental data. The model parameters were similar to those used in the literature for these fillers in other polymers. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here