Premium
Flammability and thermal degradation of epoxy acrylate modified with phosphorus‐containing compounds
Author(s) -
Chen Xilei,
Song Lei,
Hu Yuan
Publication year - 2009
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.30477
Subject(s) - fire retardant , flammability , limiting oxygen index , materials science , char , cone calorimeter , acrylate , thermogravimetric analysis , thermal stability , thermal decomposition , epoxy , polymer chemistry , composite material , pyrolysis , organic chemistry , polymer , chemistry , copolymer
A series of UV‐curable flame‐retardant resins was obtained by blending phosphate acrylate (BTP) in different ratios with epoxy acrylate resin (EA). The flammability was characterized by limiting oxygen index (LOI), UL 94 flammability rating and cone calorimeter, and the thermal degradation of the flame‐retardant resins was studied using thermo gravimetric analysis (TGA), and real‐time Fourier transform infrared (RTFTIR). The results indicated that the flame‐retardant efficiency increases with the addition of BTP. The heat release rate with the addition of BTP decreases greatly. The TGA data showed that EA/BTP blends have lower initial decomposition temperatures and higher char residues than pure EA, whereas BTP has the lowest initial decomposition temperature and the highest char residue. The RTFTIR study indicates that the EA/BTP blends have lower thermal oxidative stability than the pure EA. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010