Premium
Polymer electrolyte membranes having sulfoalkyl grafts into ETFE film prepared by radiation‐induced copolymerization of methyl acrylate and methyl methacrylate
Author(s) -
Hanh Truong Thi,
Takahashi Shuichi,
Chen Jinhua,
Sawada Shinichi,
Maekawa Yasunari
Publication year - 2009
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.30458
Subject(s) - etfe , copolymer , polymer chemistry , methyl acrylate , tetrafluoroethylene , methyl methacrylate , materials science , grafting , polymer , acrylate , electrolyte , membrane , methacrylate , chemistry , composite material , biochemistry , electrode , layer (electronics)
Polymer electrolyte membranes (PEMs) containing alkylsulfonic acid grafts can be prepared by radiation‐induced graft copolymerization of methyl acrylate (MA) and methyl methacrylate (MMA) into a poly(ethylene‐ co ‐tetrafluoroethylene) film followed by sulfonation of the MA units in the copolymer grafts using an equimolar complex of chlorosulfonic acid and 1,4‐dioxane (ClSO 3 H‐Complex). PEMs with MA/MMA copolymer grafts that are 33%–79% MA units were prepared by preirradiation with a dose of 20 kGy and grafting in bulk comonomers at 60°C. The grafted films are treated with ClSO3H‐Complex to obtain PEMs with ion exchange capacity of 0.36‐0.81 mmol/g (sulfonation degrees of 20%–40%) and proton conductivity of 0.04‐0.065 S/cm. These values can be controlled by changing the MA content the sulfonation occurring at an α‐carbonyl carbon. The PEMs with higher MMA content showed higher durability in water (80°C) and under oxidative conditions (3% H 2 O 2 ) at 60°C. This is because the PMMA grafts in the PEMs have no proton at an α‐carbonyl carbon, which is considered to be a trigger of the degradation of grafting polymers. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009