Premium
Preparation of poly(divinylbenzene) microspheres with controllable pore structure using poly(propylene)/toluene as coporogen
Author(s) -
Liu Qingquan,
Wang Li,
Xiao Anguo,
Yu Haojie,
Ding Jianhua,
Tan Qiaohua,
Huo Jia
Publication year - 2009
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.30414
Subject(s) - divinylbenzene , toluene , specific surface area , materials science , polymer chemistry , suspension polymerization , sorption , chemical engineering , polymerization , porosity , molar mass distribution , mass fraction , polymer , copolymer , styrene , chemistry , adsorption , composite material , organic chemistry , catalysis , engineering
Poly(divinylbenzene) (poly(DVB)) microspheres with controllable pore structure were synthesized by suspension polymerization in the presence of toluene and low‐molecular weight poly(propylene) (PP) as coporogen. The weight fraction of PP in toluene varied from 0 to 20 wt %, and the feed ratio of coporogen and DVB was kept at 1/1 (vol/vol). Effects of PP weight fraction in coporogen on the specific surface area, the average pore size, the pore size distribution and the total pore volume of final microspheres were examined. As expected, poly(DVB) microspheres prepared with toluene as sole porogen had a high specific surface area (558 m 2 /g). Using mixtures of toluene and PP as coporogen, it was found that the specific surface area shifted higher values when low levels of PP (2.0–6.0 wt %) in toluene were used as coporogen. However, further increase of PP weight fraction in toluene resulted in progressive decline of the specific surface area. Hg intrusion/extrusion curves and N 2 sorption isotherms implied caged pore structure with some small entrances. Furthermore, most of pore connectivity limitations may be eliminated when the weight fraction of PP in toluene exceeded 10.0 wt %. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009