Premium
Multiple melting and partial miscibility of ethylene‐vinyl acetate copolymer/low density polyethylene blends
Author(s) -
Shi Xuming,
Jin Jing,
Chen Shuangjun,
Zhang Jun
Publication year - 2009
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.30271
Subject(s) - crystallization , miscibility , differential scanning calorimetry , materials science , low density polyethylene , ethylene vinyl acetate , polyethylene , polymer chemistry , endothermic process , melting point , vinyl acetate , copolymer , chemical engineering , isothermal process , orthorhombic crystal system , thermodynamics , crystallography , composite material , crystal structure , chemistry , polymer , physics , adsorption , engineering
Multiple melting behaviors and partial miscibility of ethylene‐vinyl acetate (EVA) copolymer/low density polyethylene (LDPE) binary blend via isothermal crystallization are investigated by differential scanning calorimetry (DSC) and wide angle X‐ray diffraction (WAXD). Crystallization temperature T (°C) is designed as 30, 50, 70, 80°C with different crystallization times t (min) of 10, 30, 60, 300, 600 min. The increase of crystallization temperature and time can facilitate the growth in lateral crystal size, and also the shift of melting peak, which means the completion of defective secondary crystallization. For blends of various fractions, sequence distribution of ethylene segments results in complex multiple melting behaviors during isothermal crystallization process. Overlapping endothermic peaks and drops of equilibrium melting points of LDPE component extrapolated from Hoffman–Weeks plots clarify the existence of partial miscibility in crystalline region between EVA and LDPE. WAXD results show that variables have no perceptible influence on the predominant existence of orthorhombic crystalline phase structure. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009