z-logo
Premium
Mechanical properties of silane‐treated, silica‐particle‐filled polyisoprene rubber composites: Effects of the loading amount and alkoxy group numbers of a silane coupling agent containing mercapto groups
Author(s) -
Nakamura Yoshinobu,
Honda Hiroaki,
Harada Atsushi,
Fujii Syuji,
Nagata Kazuya
Publication year - 2009
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.30155
Subject(s) - silane , materials science , silanes , vulcanization , composite material , natural rubber , monolayer , alkoxy group , composite number , chemistry , organic chemistry , alkyl , nanotechnology
The surface treatment of spherical silica particles with a silane coupling agent with mercapto groups was carried out. The treated silica particles were incorporated within polyisoprene and then vulcanized. The effects of the loading amount and alkoxy group number of silane on the stress–strain curve of the filled composite were investigated. For this purpose, silanes with dialkoxy and trialkoxy structures were used. The loading amount of silane on the silica surface was varied from 1 to 8 times the amount required for monolayer coverage. The stress at the same strain increased with the silane treatment, and it was higher in the dialkoxy structure than in the trialkoxy structure above 300% strain. There was no significant influence of the loading amount on the stress for the trialkoxy silane structure. However, the stress was influenced by the loading amount, and the maximum stress was observed at 4 times the silane amount required for monolayer coverage for the dialkoxy structure. The stress had a good relationship with the crosslinking density of silica‐filled polyisoprene rubber (measured with a swelling test). The reinforcement effect by the silane treatment of silica was found to be affected strongly both by the entanglement of the silane chain and polyisoprene rubber matrix and by the crosslinking reaction between the mercapto group of silane and polyisoprene rubber in the interfacial region. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here