z-logo
Premium
Polyimide–polydimethylsiloxane copolymers for low‐dielectric‐constant and moisture‐resistance applications
Author(s) -
Xi Kai,
Meng Zhen,
Heng Liang,
Ge Renjie,
He Hui,
Yu Xuehai,
Jia Xudong
Publication year - 2009
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.30154
Subject(s) - polyimide , polydimethylsiloxane , pyromellitic dianhydride , materials science , dielectric , copolymer , polymer chemistry , chemical engineering , diamine , composite material , polymer , layer (electronics) , optoelectronics , engineering
Novel, randomly coupled, soluble, segmented polyimide–polydimethylsiloxane (PI–PDMS) copolymers were prepared from aminoalkyl‐terminated polydimethylsiloxane (At–PDMS), 4,4′‐oxydianiline diamine, pyromellitic dianhydride, and 4,4′‐diphenylmethane diisocyanate (MDI). When At–PDMS was introduced into the polyimide chain, the polyimide copolymers exhibited lower dielectric constants and better moisture resistance and mechanical properties. The reductions in the dielectric constant of the PI–PDMS copolymers could be attributed to the incorporation of polydimethylsiloxane (PDMS) into the polyimide chain and the nanopores in the film generated by carbon dioxide evolvement during the reaction. The lowest dielectric constant was 2.58 with 25 wt % PDMS and 5 wt % MDI. In addition, the water contact angles of the resultant copolymers increased from 51 to 109° when the contents of PDMS increased from 0 to 25 wt %. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here