Premium
Negative air ion releasing properties of tourmaline/bamboo charcoal compounds containing ethylene propylene diene terpolymer/polypropylene composites
Author(s) -
Yeh JenTaut,
Hsiung HanHsing,
Wei Wei,
Zhu Ping,
Chen KanNan,
Jiang Tao
Publication year - 2009
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.30003
Subject(s) - materials science , polypropylene , composite material , composite number , elongation , ethylene propylene rubber , particle size , bamboo charcoal , ultimate tensile strength , copolymer , chemical engineering , polymer , fiber , engineering
The average concentrations of negative air ions ( C ion− ) emitted from tourmaline (T), bamboo charcoal (B) particles, and tourmaline/bamboo charcoal (T/B) compounds containing polypropylene (PP) and ethylene propylene diene terpolymer/polypropylene (EPDM/PP) composite specimens under varying testing conditions were investigated in this study. The C ion− values emitted from T or B filled PP and EPDM/PP composite specimens reached a maximum value as their T or B contents approached the 5 and 3 wt % optimum values, respectively. In contrast, the C ion− values of T/B compounds filled PP and EPDM/PP composite specimens were significantly higher than their theoretical C ion− values estimated using the “simple mixing rule,” and reached a maximum value as the weight ratio of T to B reaches an optimum value. At this optimum T/B weight ratio, the C ion− values of T/B compounds filled PP and EPDM/PP composite specimens reached another maximum as their total compound loadings reached the optimum loading of 6 and 4 wt %, respectively. The C ion− values of the PP/T/B and EPDM/PP/T/B specimens increased significantly as they were tested under dynamic mode or by increasing the testing temperatures. The T and/or T/B powders filled PP and EPDM/PP specimens exhibited significantly higher tensile strength (σ f ) and elongation at break (ε f ) values than did the B filled PP and EPDM/PP specimens with the same filler loadings, respectively. Energy dispersive X‐rays, particle size, and SEM morphology analysis of the filler particles present in the T, B, and T/B filled composite specimens were performed to understand these interesting negative air ion and tensile properties. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom