Premium
Preparation and characterization of epoxidate poly(1,2‐butadiene)–toughened diglycidyl ether bisphenol‐A epoxy composites
Author(s) -
He Jie,
Wang Jinwei
Publication year - 2009
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.29994
Subject(s) - diglycidyl ether , epoxy , materials science , composite material , thermal stability , bisphenol a , composite number , thermogravimetric analysis , chemical engineering , engineering
By the oxidation of liquid poly(1,2‐butadiene) (LPB) with H 2 O 2 /HCOOH, epoxidate poly(1,2‐butadiene) (ELPB) was obtained as a toughening agent to prepare diglycidyl ether bisphenol‐A (DGEBA) epoxy composites by using V115 polyamide(PA) as a cross‐linking agent. DGEBA, ELPB, and the composites were effectively cured by PA at 100°C for 2 h followed by postcuring at 170°C for 1 h. Thermal gravimetric analysis results in air and nitrogen atmosphere showed that the thermal stability of composites could be improved by the addition of ELPB. Compared with DGEBA/PA, the composites exhibited a decrease in strength at yield but an increase in strain at break with the increase in ELPB amount. The composite with 10% ELPB exhibited both thermal stability and tenacity superior to those of DGEBA/PA and composites with 5 and 20% ELPB, respectively. The improvements in thermal and mechanical properties of composites depended on the formation of Inter Penetrating Networks (IPN) among DGEBA/PA/ELPB and their distributions in the matrix. At an appropriate ELPB amount, the IPN, mostly made of DGEBA/PA/ELPB, may be distributed more evenly in the matrix; less ELPB resulted in the formation of IPN mainly made of DGEBA/PA; excessive addition of ELPB resulted in the local aggregation of ELPB/PA and phase separations. The toughening mechanism was changed from chemically forming IPN made of DGEBA/PA/ELPB to physically reinforcing DGEBA/PA by ELPB/PA with the increase in ELPB addition. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009