Premium
Linear and branched polyoxide‐based copolymers: Methods to determine the CMC
Author(s) -
Silva Priscila R. S.,
Mauro Aparecida C.,
Mansur Claudia R. E.
Publication year - 2009
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.29952
Subject(s) - copolymer , ethylene oxide , critical micelle concentration , aqueous solution , micelle , materials science , pulmonary surfactant , pyrene , polymer chemistry , surface tension , particle size , hydrodynamic radius , chemical engineering , polymer , chemistry , organic chemistry , thermodynamics , composite material , physics , engineering
Evaluation of the physical–chemical properties of aqueous solutions of nonionic surfactants based on polyoxides can be performed by different methods. Depending on the technique used, there can be a significant variation in the critical micelle concentration (CMC) found. This is related to the sensitivity of the technique regarding the unimers and micelles present in the solution as well as the structure of the surfactant evaluated. In this work, the CMC values of aqueous solutions of linear and branched poly(ethylene oxide‐polypropylene oxide) (PEO‐PPO) block copolymers were determined by tensiometry, fluorescence, and particle size analysis, using copolymers having adjacent structures (that is, hydrophilic and hydrophobic segments located adjacently in the copolymer) and alternating structures. Tensiometry was used to measure the surface tension as a function of the copolymer concentration in aqueous solution. Fluorescence was used to determine the fluorescence intensity of pyrene to plot the graphs of the I 1 / I 3 and I E / I M relations according to the surfactant concentration. Finally, particle size analysis was used to determine the diffusion coefficient of the particles. The results showed that the fluorescence and particle size techniques provide lower (and mutually concordant) CMC values and can be considered more precise because these methods directly analyze the bulk of the solution. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009