z-logo
Premium
Nonisothermal crystallization, melting behavior, and morphology of PP/EPPE blends
Author(s) -
Qin Jianglei,
Li Zhiting
Publication year - 2009
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.29844
Subject(s) - crystallization , nucleation , materials science , avrami equation , polypropylene , scanning electron microscope , morphology (biology) , activation energy , polyethylene , phase (matter) , polymer chemistry , chemical engineering , thermodynamics , composite material , crystallization of polymers , chemistry , genetics , organic chemistry , biology , physics , engineering
Nonisothermal crystallization, melting behavior, and morphology of polypropylene (PP)/Easy processing polyethylene (EPPE) blends were studied by differential scanning alorimetry (DSC) and scanning electron microscope (SEM). The results showed that PP and EPPE are miscible, and there is no obvious phase separation in microphotographs of the blends. The modified Avrami analysis, Ozawa equation, and also Mo Z.S. method were used to analyze the nonisothermal crystallization kinetics of the blends. Values of Avrami exponent indicated the crystallization nucleation of the blends is homogeneous, the growth of spherulites is tridimensional, and crystallization mechanism of PP is not affected much by EPPE. The crystallization activation energy was estimated by Kissinger method. The result obtained from modified Avrami analysis, Mo Z.S. method, and Kissinger methods were well agreed. The addition of minor EPPE phase favored to decrease the overall crystallization rate of PP, showing some dilution effect of EPPE on PP. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here