Premium
Optimization of preparation conditions of carboxymethyl potato starch through orthogonal experimental design
Author(s) -
Bi Yinghui,
Liu Mingzhu,
Wu Lan,
Cui Dapeng
Publication year - 2009
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.29829
Subject(s) - sodium hydroxide , starch , fourier transform infrared spectroscopy , aqueous solution , molar ratio , solvent , chemistry , viscosity , molar mass , nuclear chemistry , chemical engineering , polymer chemistry , materials science , organic chemistry , polymer , composite material , engineering , catalysis
To optimize the preparation conditions of carboxymethyl potato starch (CMPS), the effects of relevant factors on viscosity (η) of 2% CMPS aqueous solution and degree of substitution (DS) were investigated. These condition parameters included etherification temperature, alkalization and etherification time, water content in the mixed solvent, ratio of liquid volume to starch mass, molar ratio of sodium hydroxide to monochloroacetic acid, and molar ratio of monochloroacetic acid to anhydroglucose unit. After individual parameter influencing η and DS was researched one by one, an orthogonal experiment of L 18 (2 × 3 7 ) was designed to identify the main factors affecting them. In light of range analysis, the comparative importance of factors impacting η and DS was obtained, separately. Results of variance analysis showed that the most effective factor to control DS was etherification temperature, whereas the influences of all factors on η were not significant. Meanwhile, η and DS of the optimized final product were found to be 12,000 mPa.s and 0.68, respectively. In addition, the structure of CMPS was characterized by Fourier transform infrared (FTIR) spectrophotometer. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009