Premium
Synthesis and properties of soy hull‐reinforced biocomposites from conjugated soybean oil
Author(s) -
Quirino Rafael L.,
Larock Richard C.
Publication year - 2009
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.29660
Subject(s) - dicyclopentadiene , materials science , thermogravimetric analysis , ultimate tensile strength , thermosetting polymer , divinylbenzene , differential scanning calorimetry , composite material , thermal stability , particle size , polymerization , chemical engineering , styrene , polymer , organic chemistry , chemistry , copolymer , physics , engineering , thermodynamics
The tensile and flexural properties of new thermosetting composites made by the free radical polymerization of a conjugated soybean oil (CSO)‐based resin reinforced with soy hulls have been determined for various resin compositions. The effects of reinforcement particle size and filler/resin ratio have been assessed. The thermal stability of the new materials has been determined by thermogravimetric analysis and the wt % of oil incorporation has been calculated after Soxhlet extraction (the extracts have been identified by 1 H‐NMR spectroscopy). The resin consists initially of 50 wt % CSO and varying amounts of divinylbenzene (DVB; 5–15 wt %), dicyclopentadiene (DCPD; 0–10 wt %), and n ‐butyl methacrylate (BMA; 25–35 wt %). Two soy hull particle sizes have been tested (<177 and <425 μm) and two different filler/resin ratios have been compared (50 : 50 and 60 : 40). An appropriate cure sequence has been established by differential scanning calorimetry (DSC) analysis. The results show a decrease in the properties whenever DVB or BMA is substituted by DCPD. Also, larger particle sizes and higher filler/resin ratios are found to have a negative effect on the tensile properties of the new materials. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009