Premium
Dynamic mechanical analysis of ethylene–propylene–diene monomer rubber and styrene–butadiene rubber blends
Author(s) -
Nair T. Muraleedharan,
Kumaran M. G.,
Unnikrishnan G.,
Pillai V. B.
Publication year - 2008
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.29367
Subject(s) - materials science , dynamic mechanical analysis , natural rubber , composite material , epdm rubber , styrene butadiene , ethylene propylene rubber , polymer blend , dynamic modulus , miscibility , glass transition , copolymer , polymer , styrene
The effects of blend ratio, crosslinking systems, and fillers on the viscoelastic response of ethylene–propylene–diene monomer (EPDM)/styrene–butadiene rubber (SBR) blends were studied as functions of frequency, temperature, and cure systems. The storage modulus decreased with increasing SBR content. The loss modulus and loss tangent results showed that the EPDM/SBR blend vulcanizate containing 80 wt % EPDM had the highest compatibility. Among the different cure systems studied, the dicumyl peroxide cured blends exhibited the highest storage modulus. The reinforcing fillers were found to reduce the loss tangent peak height. The blend containing 40 wt % EPDM showed partial miscibility. The dispersed EPDM phase suppressed the glass‐transition temperature of the matrix phase. The dynamic mechanical response of rubbery region was dominated by SBR in the EPDM–SBR blend. The morphology of the blend was studied by means of scanning electron microscopy. The blend containing 80 wt % EPDM had small domains of SBR particles dispersed uniformly throughout the EPDM matrix, which helped to toughen the matrix and prevent crack propagation; this led to enhanced blend compatibility. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009