z-logo
Premium
Porous acrylonitrile/itaconic acid copolymers prepared by suspended emulsion polymerization
Author(s) -
Yu Mengmeng,
Chen Hou,
Liang Ying,
Cui Hengli,
Zhou Wenying,
Cui Xianqiang,
Li Dongmei
Publication year - 2008
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.29339
Subject(s) - copolymer , materials science , itaconic acid , polymer chemistry , acrylonitrile , emulsion polymerization , particle size , monomer , polymerization , chemical engineering , vinyl alcohol , particle (ecology) , composite material , polymer , engineering , oceanography , geology
Porous acrylonitrile (AN)/itaconic acid (IA) copolymers were successfully prepared by suspended emulsion polymerization for the first time, with potassium peroxydisulfate (KPS) as an initiator, poly(vinyl alcohol) (PVA) as a dispersant agent, and Span80 as an emulsifier. The effects of the water/monomer mass ratio, agitation conditions, KPS concentration, PVA concentration, Span80 concentration,s and IA concentration on the average particle size and size distribution, particle morphology, and porosity of the AN/IA copolymers were investigated. The results show that the final AN/IA copolymers formed with agglomerates of primary particles had a porous structure, low particle density, and uniform particle size and did not agglomerate easily between the particles. The preparation conditions for the AN/IA copolymers were optimized as follows: (1) the water/monomer mass ratio was 0.3 : 1; (2) the concentrations of KPS, IA, PVA, and Span80 were 0.5, 12.4, 0.1, and 0.5 wt %, respectively, based on the weight of AN separately; (3) the agitation rate was 400 rpm; (4) the polymerization temperature was 70°C; and (5) the reaction time was 3 h. The size of the final AN/IA copolymer particles was in the range 200–400 μm. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom