Premium
Variations in polymeric structure of ferroelectric poly(vinylidene fluoride) films during annealing at various temperatures
Author(s) -
Inoue Masahiro,
Tada Yasunori,
Suganuma Katsuaki,
Ishiguro Hiroshi
Publication year - 2008
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.29323
Subject(s) - crystallinity , lamellar structure , materials science , annealing (glass) , small angle x ray scattering , fourier transform infrared spectroscopy , lamella (surface anatomy) , ferroelectricity , composite material , polymer , scattering , chemical engineering , polymer chemistry , crystallography , optics , dielectric , chemistry , engineering , physics , optoelectronics
Abstract To clarify the thermal degradation mechanisms of uniaxially drawn poly(vinylidene fluoride) (PVDF) films, variations due to annealing in the polymeric structures of the films were investigated using the small‐angle X‐ray scattering (SAXS) and Fourier transform infrared (FTIR) spectroscopy. The films were composed of lamellar crystals that were stacked perpendicular to the stretch direction. Although the crystallinity of the films decreased during annealing in the temperature range above the preannealing temperature, the lamellar structure was maintained even after the annealing process. There are two kinds of irreversible relaxation mechanisms during the annealing process of the films, including both a decrease in crystallinity within the lamellae and also thickening of the lamellae. A significant lamella thickening effect was observed when the films were annealed above ∼ 100°C. FTIR spectra suggested some disordered structures are developed during thickening of the lamellae. Furthermore, a long‐range periodic structure was formed in the films that were annealed above the melting temperature of PVDF. The polymeric structures formed during the fabrication process (including high‐order structures and disorders in molecular conformation) were clarified as having a significant influence on the annealing behavior of ferroelectric PVDF films. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009