z-logo
Premium
Crystallization behavior and mechanical properties of crosslinked plasticized poly( L ‐lactic acid)
Author(s) -
Jia Zhiyuan,
Zhang Kunyu,
Tan Juanjuan,
Han Changyu,
Dong Lisong,
Yang Yuming
Publication year - 2008
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.29171
Subject(s) - materials science , crystallization , differential scanning calorimetry , ultimate tensile strength , ethylene glycol , glass transition , scanning electron microscope , peg ratio , dynamic mechanical analysis , composite material , fourier transform infrared spectroscopy , elongation , chemical engineering , polymer chemistry , polymer , physics , finance , engineering , economics , thermodynamics
Enhancing the stability of plasticized poly( L ‐lactic acid) (PLLA) with poly (ethylene glycol) (PEG) is necessary for its practical application. In this study, plasticized PLLA (PLLA/PEG 80/20 wt/wt) was crosslinked under γ‐ray (Co 60 ) in the presence of triallyl isocyanurate (TAIC) as crosslinking agent. FTIR analysis revealed that PLLA, PEG, and TAIC formed a cocrosslinking structure. Crystallization behavior and mechanical properties of the crosslinked plasticized PLLA were investigated by differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD), scanning electron microscopy (SEM), and tensile tests. Experimental results indicated that the crystallization behaviors of both PEG and PLLA in the blends were restrained after irradiation. The melting peak of PEG in the crystallized samples disappeared at a low irradiation doses about 10 kGy. Although PLLA still owned the behavior of crystallize, its cold crystallization temperature and glass transition temperature shifted to higher temperature. Mechanical properties of the plasticized PLLA were strengthened through crosslinking. Both yield strength and elastic modulus of the samples increased after crosslinking. Elongation at break of the crosslinked plasticized PLLA decreased with the increase of crosslinking density but remained a high value over 200%. SEM images of fracture surfaces confirmed that the ductile fracture behavior of plasticized PLLA was kept after suitable crosslinking. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here