z-logo
Premium
Synthesis and properties of novel poly(urethane‐imide) dispersions based on 2,2‐bis[ N ‐(3‐hydroxyphenyl)phthalimidyl]hexafluoropropane
Author(s) -
Chen RueiShin,
Cheng YaLing,
Chang KaiWen
Publication year - 2008
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.29075
Subject(s) - imide , thermal stability , materials science , prepolymer , solvent , chemical engineering , thermal decomposition , polymer chemistry , polymer , polyamide , ultimate tensile strength , polyurethane , composite material , chemistry , organic chemistry , engineering
Imide units are incorporated into thermoplastic and solvent‐based polyurethane (PU) chains to improve the thermal stability of PU. However, these poly(urethane‐imide) (PUI) materials have poor processablity and suffer from solvent emission. To prepare easily processable and environmentally friendly PUI products, some waterborne PUIs are synthesized using a prepolymer process. A series of PUI dispersions with 25 wt % solid content, viscosities of 7.5–11.5 cps, and particle sizes of 63–207 nm was prepared. The composition–property relationship of PUIs, including the solubility behavior of PUI cast films, and their thermal and mechanical properties were established. The solvent resistance and tensile strength of PUI film increased with the number of imide groups. All PUIs exhibited improved thermal stability but not char yield as the temperature increased. The inclusion of a little imide increased the decomposition temperature of PUI while maintaining the elasticity of the polymer, revealing successful translation of PUI into the water‐based form. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here