Premium
Poly(3‐dodecyl thiophene)—Organically modified montmorillonite clay nanocomposites: Influence of chain regioregularity and preparation condition on physical, mechanical, optical, and conductivity properties
Author(s) -
Kuila Biplab K.,
Nandi Arun K.
Publication year - 2008
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.29074
Subject(s) - nanocomposite , montmorillonite , materials science , exfoliation joint , thiophene , dynamic mechanical analysis , solvent , intercalation (chemistry) , polymer , polymer chemistry , composite material , chemical engineering , graphene , chemistry , organic chemistry , nanotechnology , engineering
The properties of regioregular(R) (98.5 mol % H‐T) and regioirregular(I) (80.5 mol % H‐T) poly(3‐dodecyl thiophene)(P3DDT)—organically modified montmorillonite (om‐MMT) clay nanocomposites obtained from solvent‐cast and melt‐cooled procedures are compared. The solvent‐cast P3DDTI nanocomposites showed partially exfoliated clay structure but P3DDTR nanocomposites showed multistack exfoliation. Type 1 crystalline polymorph was produced in solvent‐cast systems whereas melt‐cooled P3DDTI samples showed mesomorphic structure. Storage modulus of P3DDTI nanocomposites increased with clay concentration showing a maximum increase of 255%. The UV‐vis spectra showed blue shift of π–π* transition band and photoluminescence spectra indicated seven times increase of normalized intensity in solvent cast P3DDTI composites. DC conductivity and I – V characteristic curves showed increased insulating properties with om‐clay concentration. The physical, mechanical, and optical properties of P3DDTI nanocomposites are more improved than that of P3DDTR nanocomposites and from their pristine polymers. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009