z-logo
Premium
Biodegradation of oxo‐biodegradable polyethylene
Author(s) -
Reddy M. M.,
Deighton M.,
Gupta Rahul K.,
Bhattacharya S. N.,
Parthasarathy R.
Publication year - 2008
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.29073
Subject(s) - biodegradation , polyethylene , polymer , fourier transform infrared spectroscopy , biodegradable polymer , degradation (telecommunications) , molar mass distribution , chemistry , polymer degradation , materials science , chemical engineering , polymer chemistry , organic chemistry , telecommunications , computer science , engineering
Biodegradation of polyethylene and oxo‐biodegradable polyethylene films was studied in this work. Abiotic oxidation, which is the first stage of oxo‐biodegradation, was carried out for a period corresponding to 4 years of thermo‐oxidation at composting temperatures. The oxidation was followed by biodegradation, which was achieved by inoculating the microorganism Pseudomonas aeruginosa on polyethylene film in mineral medium and monitoring its degradation. The changes in the molecular weight of polyethylene and the concentration of oxidation products were monitored by size exclusion chromatography and Fourier transform infrared (FTIR) spectroscopy, respectively. It has been found that the initial abiotic oxidation helps to reduce the molecular weight of oxo‐biodegradable polyethylene and form easily biodegradable product fractions. In the microbial degradation stage, P. aeruginosa is found to form biofilm on polymer film indicating its growth. Molecular weight distribution data for biodegraded oxo‐biodegradable polyethylene have shown that P. aeruginosa is able to utilize the low‐molecular weight fractions produced during oxidation. However, it is not able to perturb the whole of the polymer volume as indicated by the narrowing of the polymer molecular weight distribution curve toward higher molecular fractions. The decrease in the carbonyl index, which indicates the concentration of carbonyl compounds, with time also indicates the progress of biodegradation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here